Precision Farming: What is Precision Farming

“Precision farming” is the new term coined for farming practices which were variously described as “prescription farming”, “site-specific” practices, “variable rate technology” etc previously (Chew, 1998). Notwithstanding the many connotations, the basic philosophy of precision farming is to measure and manage variabilities such as yield, soil, pest and weed across the fields (Larscheid et al. , 1997) in order to enhance efficiency in the management of agricultural practices in the cropping system for optimum productivity, product quality and economic returns, and minimise environmental impact and agricultural risk. It therefore prescribes applications of what are only required to achieve the particular goal(s) at various distinct points or sites (Chew, 1998) in sufficiently fine scale in the fields. It capitalises on the advent in information technology and engineering to attain its objectives.

The five core components or processes of precision farming (Blackmore and Larscheid, 1997) are:

  • Measuring variability
  • Analysing variability
  • Decision-making
  • Differential actions
  • Assessment of results

Measuring and analysing variability form the keystones of precision farming. They attempt to establish the permanent field characteristics that influence production and yield maps for as many years as possible (Blackmore and Larscheid, 1997). These characteristics or factors are recorded at precise locations over time to enable the study of spatial and temporal variabilities. The existence of these variabilities particularly yield and the understanding of them provide an opportunity for precision farming. In fact, if they do not exist then a uniform management system is both the cheapest and most effective management strategy and precision farming is redundant (McBratney and Taylor, 1999). In analysing variability, it is common to produce maps which show spatial trend, stability of the spatial characteristics such as yield and management (classified) zones for similar inputs.

Recording spatial data and plotting maps will be meaningless unless we can quickly retrieve the data and translate them into information and knowledge for use in improving the production system. This falls into the area of a decision support system (Goh et al. , 1997) which can incorporate inter alia crop models, artificial intelligence, data mining tools and information technology to examine whether variable actions in specific areas of the fields are warranted, match the local resources and agronomic practices with the soil properties, crop requirements etc and develop different strategies from the data for the management to choose and implement in the fields. However, it should be appreciated that not all variabilities can be managed efficiently or economically because they depend very much on the nature and magnitude of the variabilities (McBratney and Taylor, 1999).

The availability of geographical information system (GIS) and global positioning system (GPS) has enabled the quick production of maps for the management to locate the problem areas precisely in the fields for differential treatments. Variable rate applicators, machinery and technology have been used in many crops such as rice, wheat, corn, soybean and other crops to apply the prescribed treatments at each site (Chew, 1998). As the costs of equipment and technology decrease, this practice will eventually become available to farmers with low value or non-strategic crops like oil palm.

It is a wise management principle to always monitor and assess the results of agricultural practices against the tactical or strategic objectives and goals of the cropping system for further actions and if necessary, the whole processes of precision farming may repeat themself. In fact, McBratney and Taylor (1999) have conceptualised the above processes for a site-specific management system as a Precision Agriculture wheel as shown in Figure 3. They also point out that precision farming is a wheel and without one of the cogs it will not succeed.

Figure 3: The Precision Agriculture wheel: Components of a site-specific crop management (SSCM) system


Source: McBratney and Taylor (1999)

The philosophy and processes of precision farming have been made possible by the advent and recent affordability of several key technologies (Chew, 1998) such as:

  • Personal computers
  • GPS technology which reads signals continuously available from satellites enabling near pin-point horizontal and vertical accuracy
  • Remote sensing where satellite and aerial images are processed and correlated to crop characteristics
  • GIS technology which manages and displays spatial data and relationships
  • Variable rate application equipment with sensors and GPS to respond to field and soil variables.

Apart from hardware, the development in information technology is also essential towards the success of precision farming. The technology is needed to control the sensors for variable rate application, datalogging and transforming data into knowledge as discussed earlier.

It is increasingly recognised that precision farming is a cropping system and therefore, cannot be separated from the management system and philosophy of the farm. This is because precision farming involves capital expenditure, re-training of personnel including workers, and human perception and acceptance of new practices. McBratney and Taylor (1999) state that the concepts of Total Quality Management (TQM) and Vertical Integration (VI) in the agricultural sector are central to the precision farming philosophy. They further contend that “a farmer is concerned not only with quality at the farm gate but also the quality at the point of sale and how his product meets consumer demands. This will bring premiums and also will probably be used for environmental auditing”.

With the potential benefits, it is not surprising that interest in precision farming is now sweeping the world with many research centers being set-up to advance the technologies and introduce them to the local farming systems. Can we learn from them and apply these new tools to our advantage in the oil palm plantations?

News

AAR wishes to congratulate Ms. Gan Siau Ting and their team members for being awarded the 2013 PIPOC’s Best Poster Award, for their poster paper “A High Density DArT- and SNP-based Linkage Map of ...
AAR wishes to congratulate Mr. Sim Choon Cheak for being awarded the 2012 Scholar Award, Southeast Asia region by IPNI. For further details, please visit IPNI website at http://www.ipni.net/article/I...
\r\n\r\n\r\n\r\nThe GLC Open Day, a showcase of government-linked companies in collaborations with private sectors was held from 24-26 June 2011 at Kuala Lumpur Convention Centre. Boustead Holdings Bhd. is on...
The original article in PDF format\r\n\r\nAs food prices escalate throughout the world, scientists say it is time for Malaysia to pay more attention to soil and crop research.\r\n\r\n\"The crisis of high foo...
\r\n\r\n\r\n\r\n\r\n\r\n\r\n\r\n\r\n\r\n\r\nDr. Kee Khan Kiang, Director of Research, AAR holding the certificate of achievement during the 5th Malaysia Power Brand 2011 Award Gala Dinner held on 27 March 2011.\r\n\r\n\r\nCongr...
\r\n\r\n\r\n\r\nNote: This article is written by Dr. Chee in mandarin and published by Agroworld, Issue No. 236, February 2011, Kuala Lumpur : 34-36. (Translated by Soon, S.H. and reviewed by Wong, C.K.)\r\n...
RM4.4b allocation for oil palm replanting (published in Business Times dated 5 January 2011)\r\n\r\nThe original article in PDF format\r\nMalaysia\'s oil palm industry will spend RM4.4 billion to replan...
From \'Dolly Parton\' bunches to smaller one, oil-laden ones (published in Business Times, 23 November 2010)\r\n\r\nClick here to enlarge image\r\n...
Congratulations to AAR on being awarded the ISO 9001:2008 Quality Management System certification for its Tissue Culture Laboratory (published in New Straits Times dated 20 November 2010)\r\n...
(The mandarin version of this article is published in Alam Pertanian, issue 8, 2010. This article is translated from mandarin to English by SSH)\r\n(The Bahasa Malaysia version of this article is a...
\"油棕品种 - 矮种,高产量,高油量特点 - 打造丰硕收成油棕园\" (published in Alam Pertanian, issue 7, 2010)\r\n\r\n\r\n...
\"Baka Kelapa Sawit Terkini Untuk Meraih Hasil Yang Tinggi\" (published in Info Pertanian, issue 7, 2010)\r\n >>Mandarin version<<\r\n\r\n\r\n...
\r\n\r\n\r\n\r\n\r\n\r\nScope of certification: Production and sales of tissue cultured clonal oil palm planting materials starting from the receiving of embryoids\r\n\r\n\r\n\r\n\r\n\r\n\r\n\r\n\r\n\r\n\r\n\r\n\r\n\r\n\r\n\r\n\r\n\r\nAcknowledgeme...
Aerial Impression of AAR\'s New Complex\r\n\r\n\r\n[ngg_images source=\"albums\" container_ids=\"2\" display_type=\"photocrati-nextgen_basic_extended_album\" gallery_display_type=\"photocrati-nextgen_basic_thumbnai...
We regret to announce the sudden demise of a dear friend and colleague Madam Ho Yuk Wah recently. The International Oil Palm fraternity has lost a valuable member who had contributed so much to the in...
AAR moving into new office complex (published in The Star dated 18 January 2008)\r\n...
Strong demand boosts CPO price (published in Financial Daily dated 18 January 2008)\r\n...
Cheap oil palm replanting loans for smallholders (published in New Straits Times dated 18 January 2008)\r\n...
\r\n\r\n\r\n\r\n\r\n\r\n\r\n\r\nOrder form\r\n\r\n\r\n\r\nPreface\r\n\"There has never been a cover crop like this before in our plantations\" was the common comment that we heard at the Seminar and Field Tour on \" Mucuna bract...
The Deputy Chief Minister Datuk Patinggi Tan Sri Alfred Jabu Numpang refuted allegations made by some Western non-governmental organisations (NGOs) that peat soil in Sarawak was unsuitable for plantin...
Centre for crop research (published in The Star dated 25 February 2007)\r\n...
Queen\'s Royal Visit to Goodenough College\r\n\r\nMr. Patrick Ng (second from left) was presented to the Queen of United Kingdom on 10 November 2006.\r\n\"Queen Elizabeth II, the Queen of United Kingdom would...
AA Resources optimistic of 20pc sales growth (published in New Straits Times dated 19/07/2006)\r\n\r\n\r\n\r\nEditor\'s notes\r\nErrata\r\n1) Dr. Soh Aik Chin is Head of Agricultural Resources and not chief exe...
Cloned oil palms push up AAR revenue (published in The Star dated 19/07/2006)\r\n\r\nEditor\'s notes\r\nErrata\r\n1) Dr. Soh Aik Chin is Head of Agricultural Resources and not chief executive officer....
\r\n\r\n\r\n\r\nWe are proud to announce that Dr Soh Aik Chin, the Head of Advanced Agriecological Research Sdn. Bhd., has been awarded the Fellow of Academy Science for year 2006 under the biological scien...
Clones from Ijok (published in Malaysian Business dated 16-30 June 2006)\r\n\r\n\r\n...
AAR is proud to announce that Mr. Patrick Ng (Research Officer), who joined us in 1998 has been awarded the prestigious \'British Chevening Scholarships\' for year 2006 from the British Council of Malay...
\r\n\r\n\r\nAAR wish to congratulate Madam Siti Norasikin Binti Moksen (Research Clerk) on her successful completion of the Executive Diploma in Management with Distinction from University of Malaya. It is ...
\r\nWe are proud to announce that Dr Soh Aik Chin, the Head of Advanced Agriecological Research Sdn. Bhd., was presented the prestigious Malaysian Toray Science Foundation 2005 Science & Technology ...